Sains Malaysiana 54(3)(2025): 927-941

http://doi.org/10.17576/jsm-2025-5403-23

 

A New Gompertz-Three-Parameter-Lindley Distribution for Modeling Survival Time Data

(Taburan Gompertz-Tiga-Parameter-Lindley Baharu untuk Memodelkan Data Masa Kemandirian)

 

FEI LIANG1, HEZHI LU1,2,* & YUHANG XI1

 

1School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China

2Lingnan Research Academy of Statistical Science, Guangzhou University, Guangzhou 510006, China

 

Received: 20 May 2024/Accepted: 2 December 2024

 

Abstract

In this paper, a new survival distribution is introduced. It is a mixture of the Gompertz distribution and three-parameter-Lindley distribution. The statistical properties of the proposed distribution including the shape properties, cumulative distribution, quantile functions, moment generating function, failure rate function, mean residual function, and stochastic orders are studied. Moreover, a new regression model based on the proposed distribution is presented. Maximum likelihood estimators (MLEs) of unknown parameters are obtained via differential evolution algorithms, and simulation studies are conducted to evaluate the consistency of the MLEs. Finally, the proposed model and its regression model are applied to a real dataset and compared with other well-known models, demonstrating their superior performance, particularly for heavy-tailed data.

Keywords: Differential evolution algorithm; Gompertz-Lindley distribution; maximum likelihood estimation; regression model; structural property

 

Abstrak

Dalam kertas ini, suatu taburan survival baharu diperkenalkan. Ia adalah campuran taburan Gompertz dan taburan tiga parameter-Lindley. Sifat statistik bagi taburan yang dicadangkan termasuk sifat bentuk, taburan kumulatif, fungsi kuantil, fungsi penjanaan momen, fungsi kadar kegagalan, fungsi baki min dan susunan stokastik dikaji. Selain itu, model regresi baharu berdasarkan pengedaran yang dicadangkan dibentangkan. Anggaran kebolehjadian maksimum (MLE) bagi parameter yang tidak diketahui diperoleh melalui algoritma evolusi pembezaan, dan kajian simulasi dijalankan untuk menilai ketekalan MLE. Akhir sekali, model yang dicadangkan dan model regresinya digunakan pada set data sebenar dan dibandingkan dengan model terkenal lain, menunjukkan prestasi unggul mereka, terutamanya untuk data berat.

Kata kunci: Algoritma evolusi berbeza; anggaran kebolehjadian maksimum; model regresi; sifat struktur; taburan Gompertz-Lindley

 

References

Alizadeh, M., Benkhelifa, L., Rasekhi, M. & Hosseini, B. 2020. The odd log-logistic generalized gompertz distribution: Properties, applications and different methods of estimation. Communications in Mathematics and Statistics 8: 295-317.

Al-Omari, A.I., Ciavolino, E. & Al-Nasser, A.D. 2020. Economic design of acceptance sampling plans for truncated life tests using three-parameter Lindley distribution. Journal of Modern Applied Statistical Methods 18(2): 2-15.

Benkhelifa, L. 2017. The beta generalized Gompertz distribution. Applied Mathematical Modelling 52: 341-357.

Boshi, M.A.A., Abid, S.H. & Al-Noor, N.H. 2019. Generalized Gompertz - Generalized Gompertz distribution. Journal of Physics-Conference Series 1234: 012112.

Eghwerido, J.T., Ogbo, J.O. & Omotoye, A.E. 2021. The Marshall-Olkin-Gompertz distribution: Properties and applications. Statistica 81: 183-215.

El-Damcese, M.A., Mustafa, A., El-Desouky, B.S. & Mustafa, M.E. 2015. The odd generalized exponential gompertz distribution. Applied Mathematics 6: 2340-2353.

Gavrilov, L. & Gavrilova, N. 2001. The reliability theory of aging and longevity. Journal of Theoretical Biology 213: 527-545.

Ghitany, M., Alqallaf, F. & Balakrishnan, N. 2014. On the likelihood estimation of the parameters of Gompertz distribution based on complete and progressively type-Il censored samples. Journal of Statistical Computation and Simulation 84: 1803-1812.

Ghitany, M.E., Atieh, B. & Nadarajah, S. 2008. Lindley distribution and its application. Mathematics and Computers in Simulation 78(4): 493-506.

Ghitany, M.E., Aboukhamseen, S.M., Baqer, A.A. & Gupta, R.C. 2019. Gompertz-Lindley distribution and associated inference. Communications in Statistics-Simulation Computation 51(5): 2599-2618.

Jafari, A., Tahmasebi, S. & Alizadeh, M. 2014. The beta-gompertz distribution. Revista Colombiana De Estadistica 37: 141-158.

Jayakumar, K. & Shabeer, A.M. 2022. On a generalization of Gompertz distribution and its applications. Journal of the Indian Society for Probability and Statistics 23: 241-265.

Lenart, A. 2014. The moments of the Gompertz distribution and maximum likelihood estimation of its parameters. Scandinavian Actuarial Journal 3: 255-277.

Lenart, A. & Missov, T. 2016. Goodness-of-fit tests for the Gompertz distribution. Communications in Statistics - Theory and Methods 45: 2920-2937.

Lindley, D.V. 1958. Fiducial distributions and Bayes theorem. Journal of the Royal Statistical Society Series B 20: 102-107.

Marshall, A.W. & Olkin, I. 1997. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84: 641-652.

Ou, X.H., Lu, H.Z. & Kong, J.S. 2022. The structural properties of the Gompertz-Two-Parameter- Lindley distribution and associated inference. Open Mathematics 20(1): 1581-1593.

Shen, L.J., Zeng, Q., Guo, P., Huang, J.J., Li, C.F., Pan, T., Chang, B.Y., Wu, N., Yang, L.W., Chen, Q.F., Huang, T., Li, W. & Wu, P.H. 2018. Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data, Nature Communications 9: 2230.

Shaked, M. & Shanthikumar, J.G. 2007. Stochastic Orders. New York: Springer.

Shama, M.S., Dey, S., Altun, E. & Afify, A.Z. 2022. The Gamma-Gompertz distribution: Theory and applications. Mathematics and Computers in Simulation 193: 689-712.

Shanker, R. & Sharma, S. 2013. A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics 4: 363-368.

Shanker, R., Shukla, K.K. & Mishra, A. 2017. A three-parameter weighted Lindley distribution and its applications to model survival time. Statistics in Transition New Series 18(2): 291-310.

Shaker, R., Shukla, K.K., Shanker, R. & Leonida, T.A. 2017. A three-parameter Lindley distribution. American Journal of Mathematics and Statistics 7(1): 15-26.

Thamer, M.K. & Zine, R. 2023. Statistical properties and estimation of the three-parameter Lindley distribution with application to COVID-19 data. Sains Malaysiana 52(2): 669-682.

Xi, Y.H., Lu, H.Z. & Liang, F. 2024. On a new transmuted three-parameter Lindley distribution and its applications. Sains Malaysiana53(6): 1427-1440.

 

*Corresponding author; email: luhz@gzhu.edu.cn

 

 

 

 

 

 

 

previous next